MATH 590: QUIZ 2

Name:

Throughout V will denote a vector space over F, where $F = \mathbb{R}$ or $F = \mathbb{C}$.

1. For subspaces $W_1, W_2 \subseteq V$, define what it means for V to be the *direct sum* of W_1 and W_2 and give an example of a direct sum decomposition. (4 points)

Solution. V is the direct sum of the subspaces W_1 and W_2 if the following conditions hold: (i) $V = W_1 + W_2$ and (ii) $W_1 \cap W_2 = \vec{0}$.

Possible examples: \mathbb{R}^2 is the direct sum any any two distinct lines though the origin, in particular, \mathbb{R}^2 is the direct sum of the *x*-axis and *y*-axis. Similarly, \mathbb{R}^3 is the direct sum of any plane through the origin and line through the origin not lying in that plane. In particular, \mathbb{R}^3 is the direct sum of the *xy*-plane and the *z*-axis.

2. For $v_1, \ldots, v_r \in V$ state two equivalent conditions for this set of vectors to be linearly dependent. (4 points)

Solution. The vectors v_1, \ldots, v_r are linearly dependent if the following equivalent conditions hold:

- (i) There exist $a_1, \ldots, a_r \in F$, not all 0, such that $a_1v_1 + \cdots + a_rv_r = \vec{0}$.
- (ii) For some $1 \le i \le r, v_i \in \text{Span}\{v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_r\}$.
- 3. Describe the subspace of $M_{2\times 2}(\mathbb{R})$ spanned by the matrices $\begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}$. (2 points)

Solution. The span of the given matrices is the set of all matrices of the form $\begin{pmatrix} 2a & -a \\ -b & b \end{pmatrix}$ with $a, b \in \mathbb{R}$.