## MATH 590: QUIZ 2

## Name:

Throughout $V$ will denote a vector space over $F$, where $F=\mathbb{R}$ or $F=\mathbb{C}$.

1. For subspaces $W_{1}, W_{2} \subseteq V$, define what it means for $V$ to be the direct sum of $W_{1}$ and $W_{2}$ and give an example of a direct sum decomposition. (4 points)

Solution. $V$ is the direct sum of the subspaces $W_{1}$ and $W_{2}$ if the following conditions hold: (i) $V=W_{1}+W_{2}$ and (ii) $W_{1} \cap W_{2}=\overrightarrow{0}$.

Possible examples: $\mathbb{R}^{2}$ is the direct sum any any two distinct lines though the origin, in particular, $\mathbb{R}^{2}$ is the direct sum of the $x$-axis and $y$-axis. Similarly, $\mathbb{R}^{3}$ is the direct sum of any plane through the origin and line through the origin not lying in that plane. In particular, $\mathbb{R}^{3}$ is the direct sum of the $x y$-plane and the $z$-axis.
2. For $v_{1}, \ldots, v_{r} \in V$ state two equivalent conditions for this set of vectors to be linearly dependent. (4 points)

Solution. The vectors $v_{1}, \ldots, v_{r}$ are linearly dependent if the following equivalent conditions hold:
(i) There exist $a_{1}, \ldots, a_{r} \in F$, not all 0 , such that $a_{1} v_{1}+\cdots+a_{r} v_{r}=\overrightarrow{0}$.
(ii) For some $1 \leq i \leq r, v_{i} \in \operatorname{Span}\left\{v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{r}\right\}$.
3. Describe the subspace of $M_{2 \times 2}(\mathbb{R})$ spanned by the matrices $\left(\begin{array}{cc}2 & -1 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{cc}0 & 0 \\ -1 & 1\end{array}\right)$. (2 points)

Solution. The span of the given matrices is the set of all matrices of the form $\left(\begin{array}{cc}2 a & -a \\ -b & b\end{array}\right)$ with $a, b \in \mathbb{R}$.

